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1. Introduction

In the following chapters we will discuss particle methods for the numerical
simulation of rarefied gas flows.

We will mainly treat a billiard game, that is, our particles will be hard
spheres. But we will also touch upon cases where particles have internal
energies due to rotation or vibration, which they exchange in a collision,
and we will talk about chemical reactions happening during a collision.

Due to the limited size of this paper, we are only able to mention the
principles of these real-gas effects. On the other hand, the general concepts
of particle methods to be presented may be used for other kinds of kinetic
equations, such as the semiconductor device simulation. We leave this part
of the research to subsequent papers.

Finally, this paper is written by mathematicians. Missing physical in-
tuition needed to ‘simulate the game of nature’ (Bird, 1989), we have to
describe rarefied gas flows by a kinetic equation — this is the modelling part
— and then we have to solve this equation numerically.

In a first — a modelling — part we will describe how to get the ‘correct’
kinetic equation. In a second part we shall describe our basic ideas for solving
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these equations. They lead to particle methods or — as we sometimes prefer
to call them in order to stress the principal similarity to finite differences or
finite elements — finite point set methods (FPM).

In Section 4 we shall talk about the practical aspects of a realization of
particle methods and the réle of random numbers and give a comparison
between existing codes. In the last part we shall touch on several techniques
to improve particle codes, to accelerate the algorithm and to use particle
methods on massively parallel machines.

Finally we present some numerical results obtained with particle codes.

2. Collision Integrals for the Boltzmann Equation

Our mathematical model will be a kinetic equation describing the time evo-
lution of a density in position—velocity space

t— f(t,z,v), z€QuelR3,

which may depend on internal energies too. A kinetic equation has the form

of of :
'(%—f—v'%-f-E-%—I(f),
where F is an exterior or self-consistent force field and I(f) denotes the
collision term.

A prototypical kinetic equation is the Boltzmann equation stated in 1874
by Ludwig Boltzmann. The equation describes the microscopic behaviour of
a dilute gas undergoing binary collisions. For the rest of the paper we assume
that the force field F vanishes. Hence the main aspect in the modelling part
is the derivation of the collision integral.

2.1. Collision Integral

Bobylev (1993) gives a systematic derivation of I(f) from several quite sim-
ple postulates. We shall shortly review these results since they seem to
offer a new approach for collision modelling — the classical approach due to
Boltzmann or improved versions of it as given by Cercignani (1989) are well
known.

(a) We take into account only binary collisions — hence I is a quadratic,
time-independent operator

1(0)©) =16, H0) = [ [ Ko [v1,0)f(0)f(02) do doa
R3 R3
Remark 1 This assumption fails if one has to consider recombination
in chemical reactions, where a third collision partner is needed as an
energy source.



(b)

(d)
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The collision operator I is invariant under translation in the velocity
space: if

fa(v) := f(v+a),
then
I(fa) = I(f)a
Remark 2 This assumption is not true for semiconductor devices.
From (a) and (b) one gets
K(v|v,v2) = Qv —v,v2 — v)
and

I(f)(v) =//Q(Ul,u2)f(v+u1)f(v+Uz)dul dus.

R3 R3
The collision operator I is invariant under rotations in v-space. Then
Q(u1,u2) = Q(lual, ual, < w1, up >).
The collision operator I can be decomposed into a gain and a loss term
Q=Q"—-Q with@Q* >0
and I~ (f) = 0 if f = 0: nothing can be lost, if there is nothing. Then

Q" (1, u2) = 5 [g(1 o) + g([uas(ur)]

where g(|u|) is an arbitrary function.
With ¢ defined by QF (u1,u2) = 23¢(2uy, 2uz) we get

10w = [ [atw-outw)f@)fw)d dw
R3 R3

~f(v) [ g(jubf(w) du,
R3
where u = v —w, v =v+ (v —u), v =w— (v —u).
We have conservation of mass (or particles):

/f(f)(v) dv=0.
R3

Then
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and with p(u’ | u) = ¢(u — v/, u + ') (transition probability) we get
= [ [ o 0 £)f @) - plu | 4)f @) f(w)] de’ duw.
R3 R3

Microreversibility means p(—u' | —u) = p(u | v'). If we include the
symmetry (c), we get

plu | ) =p(Jul, W], < u,u >)
and
p(u | u) = p(u| o).
From (f) we get the H-theorem

/I v)Inf(v)dv <0.

Remark 3 Assumption (b) implies also conservation of momentum
/ vi(f)(v) dv = 0.
R3

Conservation of energy implies p(u | u') = 0 if |u| # |u/|. Then

<uu>)

plu ) = 26 (u')* = juf?) o (1ul, <25
With o' = |u/| - n = |u] - 1, u = v — w we get finally

o) = [ [l (1o, =52 ) [0 ) = £(0)1(w)] dwd,
R3 §2

where o(|u[, cos8) is now the only undetermined function, the differen-
tial cross section.

The differential cross section ¢ is now to be chosen in such a way that we
are able to reproduce measurements. These measurements are mainly those
on transport coefficients — for example, the dependence of the kinematic
viscosity on temperature. The simplest idea for ¢ is given by considering a
billiard gas (in the phenomenological derivation)

o(jul,cosf) =d - cos¥,

where d is a constant connected with the diameter of the molecules. But this
gives wrong macroscopic laws; for example, the viscosity 1 does not depend
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on T as experiments tell us, which is reflected in the Sutherland formula:
n . T
VT T+T,
A better agreement can be achieved by changing o a bit, using the so-
called variable hard sphere (VHS) model

a
o(|ul,cos8) =d (1 + W) cos 6.

In this model, the diameter ‘shrinks’ if the relative velocity |u| = |v — w|
is larger; this is not microscopically realistic, but reasonable in the sense of
modelling.

2.2. Real-Gas Effects

If one wants to include real-gas effects such as inelastic scattering or chem-
ical reactions, the model gets much more complicated. We will sketch the
approach to these phenomena.

Assume we have a mixture of molecules As and the corresponding atoms
A. There are essentially (neglecting ionization) five kinds of collision pro-
cesses that we have to take into account:

A+A = A+4 4)
A+Ay = A+ A4, (i)
As+ A = Ag+ As, (ZZZ)
AtAs = A+A+A, (iv)
A2+A2 = A+A+A2. (v)

The equations (i)—(iii) describe scattering processes, where (i) corresponds
to the classical Boltzmann case. The possibility of dissociation and recom-
bination is stated in (iv) and (v). Note that in the case of recombinations
we have to consider triple collisions in order to fulfil energy and momentum
conservation.

In 1960 Ludwig and Heil formulated a system of generalized Boltzmann
equations describing the aforementioned collision processes. Following
Kuséer (1991) we reformulate these equations in terms of differential cross
sections.

Let f(v,t)and g(v,e€,t) be the distribution functions for the components
A and Ay of the mixture, where ¢ represents the internal energy of the
molecule. Then the Boltzmann (or ‘Ludwig-Heil’) equations for f (and g,
respectively) have collision terms representing these 5 collision processes.
The differential cross sections depend on the total energy E of the process
(instead of |u|) and on internal energies. As an example we show just one
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expression occurring in the description of the dissociation of molecules:

21,,712
m-|u
Z / 16|E.2I Odm Ea 71,1 6,1 6/1 - Etra w, 62)

€2, €}
! 1/ 2h 3 /
X199 - | — ffigz2| dvi dvgdw(n’)

and it would take some time to explain all the terms here. Recombination is

shown in ( f f1g2 and it is still an open question whether recombination

plays a significant role in real applications.

The undetermined part is again o; for the nonreactive part, where the
molecules and atoms are just scattered, one uses a generalization of the
so-called Larssen-Borgnakke model (Borgnakke-Larssen, 1975) that con-
sists essentially in dividing the differential cross section into three parts and
performing ‘detailed balance’. For collisions among diatomic molecules the
model is as follows:

Usm(Ea"?"r]I’ 5/,1/;’5/1’1/]- — €, VkvelaW) = (1 _a_b)Usm,e1+aUsm,ve+basm,in

with
1
Osmel — - tC‘t(E’) b(e —€ )5(61 — 61)51]95]@,
3
Osmye = 53 oo (E) - (E — € — €1)8ikbjs,

Osm,in = C(E)-(E—e—el Vk_Ve) tot( ),

where € is continuous rotational energy, V; is discrete vibrational energy
with level index i and %3¢ is total scattering cross section. Note that g%t
depends on the collision energy E as in the VHS model.

In the generalized Larssen—Borgnakke model three kinds of scattering are
considered:

(i) completely elastic (osmel),
(ii) vibrationally elastic but maximally inelastic with respect to rotation

(Usm,ve),
(iii) completely inelastic (Osm,in)-

The explicit form of the factor C(E) (depending on the vibrational model)
is somewhat lengthy and therefore not quoted here. The parameters a and
b are chosen to reproduce measured transport coefficients.

For the dissociation reaction we assume (since we do not have enough
measurements) for the differential cross section a uniform probability distri-
bution over the energy shell in phase space. This concept is widely used in
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high-energy physics and often successful in describing decay processes. The
differential cross sections for the dissociation reactions (iv) and (v) are the
following:

1
Uda(El, 77’, 6/ - Etraw) = mag‘:(E’, 6,)7

Udm(E,a ,’7/, Ela ‘/i/v ellv ij/ — €, Vk, €tr, (.U)
= vib(E)(E —€- Vk)20¢t:l(x)rt1(Ela 6/’ V;,, ell’ V]l)
with (‘threshold cross section’)
El _ E n
Tdardm = U(n)(—,—B) -©(E' - Ep),
tr
where FEp is the binding energy of the molecule and O is the Heaviside
function. The parameters 6™ and n have to be chosen to reproduce the
measured ‘rate coefficient’ in equilibrium. This means that averaging of
|ul - 0434y Over Maxwell-Boltzmann distributions should lead to a form of
the rate coefficient similar to the well known ‘Arrhenius law’:
5
K(T) = AT?
(1= ey (222),
where Kp is Boltzmann’s constant and T is temperature. The modelling
becomes complicated, but is still possible to handle. We finally want to
mention that — besides recombination — ionization, radiative energy transfer
and soforth are not yet included and much work remains to be done. We
refer the reader to Kuscer (1991) and Bérwinkel and Wolters (1975).

3. Particle Methods for the Boltzmann Equation

There are two aspects of particle methods for the Boltzmann equation: the
first one is the theoretical derivation of a particle method; the second the
practical aspects of implementing such a simulation scheme.

In this chapter we will discuss the first aspect starting with the definition
of particle approximations. The fundamental part in the time evolution of
particles is the collision integral; hence we first consider in Subsection 3.2
the homogeneous Boltzmann equation. Finally we explain how to derive
particle methods for the full inhomogeneous equation.

8.1. Particle Approzimations

A particle is characterized by its position z, velocity v and mass (or charge)
a. In order to simplify the notation we put p = (x,v). A particle ensemble
(or finite point set) is given by

wn = {(a1, p1),...,(an,pN)}
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or — in another notation — by

N
6w N = Z aiépi.
i=1
We consider sequences of particle ensembles

wi ={d,pl), ... (¥, P}

or
N
— § N
6“)11\\; = o 6p£\f
i=1

Often p}V are taken from a sequence of py, po, ..., that is, more and more
particles are brought into the game; then

{pivv"'vpﬁ}':‘{ph---va}'

One can in general not expect as good results for sequences of velocities as
for sequences of ensembles.
Now, for a given density f € L1 (R?) we say that ‘6%13 converges to f’ if

N
lim zafvgo(p{v)z/prdvdx for all ¢ € CP(R3 x R3).
N—o0 i1
This means that the discrete measure 6‘“% weak* converges to fdvdzx.

Remark 4

(a) We may interpret this as an integration rule, where we integrate the
function ¢ with respect to the measure fdvdr. Knots and weights
depend on f, not on ¢. Estimates should distinguish between a distance
between wﬁ,’ and f and a smoothness property of .

(b) We should be aware that if f does not have a bounded support, we are
not able to include unbounded ¢ such as |v|? or |v|?v etc. So we do
not get the convergence of moments we need for physical reasons (as
temperature or heat transfer). This is a serious problem, which we see
also numerically, if we compute the heat transfer. Some improvements
in this direction may be found in Struckmeier (1994).

We would like to measure the distance between w% and f. This might
be done by any distance in measure spaces (such as the Prohorov metric or
bounded Lipschitz distance), but also — since the limit f dvdx is absolutely
continuous with respect to the Lebesgue measure — with the help of the
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‘discrepancy’. Consider an axis-parallel ‘rectangle’ R C IR? x IR? and the
mass of w% in R:

N
> ol xr(p)) with Xg(P) :=

{ 1 if PeR,
i=1

0 otherwise.

Compare it with the mass in R as given by f, that is, [ fdv. The largest
possible deviation, that is,

N
sup X:OLfV/’C'RQ)z /fdvdx
i=1

D (w. 1)

is called ‘discrepancy’. It is a distance between w2y v and f and we have

by — f iff D(wN,f> -0

There are other similar definitions of discrepancy using the class of convex
sets and so forth instead of rectangles — but this does not change the situa-
tion.

There are two consequences of our definition — at least for equal weights

N_ M.
a,L —W.

(a) The Koksma-Hlawka inequality:

/cpfdvdw——Zgo )| < Var[g] - D(w¥, f).

We see that in fact 6%13 — fif D(wY, f) — 0 and that it goes linear
with D. The variation of ¢, which we denote by Var|y], is for one-
dimensional v the usual total variation and might be substituted by
J ¢’ (v)| dv, if ¢ is differentiable. In dimension 3 or higher it is the so-
called ‘Hardy—Krause’ variation, a quite lengthy concept based on the
Vitali variation. One realizes that the estimate separates the distance
D from the properties of the test function. For f we assume nothing
more than that it is a density.

(b) We are now able to discuss an optimal speed of convergence: How
fast does D(w¥, f) converge to zero? Clearly, the speed depends on
the definition of D and we get mainly relative information. For f =
Xjo,1j¢(v), the uniform distribution in the unit cube, there are very
strong number-theoretic results:

With D(wY) = D(W¥, X[g,1j+) one gets that there exist constants Ck,
C), with

In N1
D(wX) < Cki—— for some w§
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and
D(wy) > C;C—N— for all w¥.

Since one can construct sequences of w%, which have a convergence rate
given by In N*~1 /N, one may say that this is ‘almost optimal’ today
and not much can be gained in principle. The convergence is slow, but
faster than NV _%, which would be the rate for random numbers. And
it grows relatively slowly with the dimension k — this is the reason why
particle methods are useful for higher dimensions! We shall see that for
us k will be typically 2 x 3+2 = 8. We shall come back to the question
of how to construct this optimal convergence order in Section 4.

Remark 5

(a) Do we gain much by using weighted particles? We have more free
parameters but realize: we want to improve D(wY, f), not | [ fodv —
S aNp(v]N)], for a concrete ¢! The only answer that is yet known is
for a very simple case: Take k = 1 and f = &g ;. Then the best

we can get without weights is %, and with weights Nﬂrl but only if
YN aN N +1- The order of convergence is not changed in this case.

(b) If we construct w¥ using a sequence (p;)jen, by just adding a new
particle when moving from N to N + 1, we loose a bit of convergence

speed: Now
In N*
o(%)

is the optimal order we can achieve.

8.2. The Homogeneous Boltzmann FEquation

The spatially homogeneous Boltzmann equation is given by

filt,z,v) = IT(f) - f//kf(t,w) dw(n) dw.

We have to discretize this equation with respect to t, putting f;(v) =
f(§At,v), and we may do that either by just a simple Euler step

fie1 = (1 - At [ kfy dln) dw) £+ B¢ [ kNS w) dofm)dw (3.)
or by integrating

g—{ =1*(f) - f/kfj dw(n) dw (3.2)

over jAt <t < (j+ 1)At with f; as initial value.
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For the first idea we have as a price to pay a severe restriction on At — but
we pay it, since the second idea is computationally very expensive without
a restriction on At. There has been no investigation yet as to whether it
might be occasionally cheaper to combine both methods.

Anyhow, we proceed with the simple explicit discretization and use a
weak formulation, which we get by multiplying both sides by a bounded
continuous test function ¢ € C® and integrating over v (in principle, we
should realize that f(t,-) is a density of a measure and measures are quite
natural mathematical objects for dealing with mass or charge distributions
etc.; we could derive a measure formulation of any kinetic equation, which
would be a natural starting point for our particle approximations, but the
weak formulation is equivalent to a measure formulation). We get using
dv'dw' = dvdw, [V —v'|=v—w|jandv=v —n<v —w',n>

[ewsn@a= [ [Kupn@b@ e @3
with

Koo = (1= 8t [ k(o= wl,0)do(n) ) pl0)+At [ k(lo-u],6)p(0') dw(n).

Equation (3.1) is equivalent to (3.3), if we use [ f;j(v)dv = 1, which is
guaranteed by the conservation of mass. The ‘transition kernel’ K, ¢ is
here independent of f; — this would be different for (3.2).

We need to transform K, ,,¢ into a form like

Koo = [ oo, w,2)x(x) do (3.4)

with an auxiliary k-dimensional variable x, since we then get

[ dv= [ [ oo w)f0)5w)x@ dedode

and we shall see that a point approximation of the (6+k)-dimensional density

fi()f;(v)x(z) leads immediately to an approximation of f;;1. Assuming

that we have such an approximation for f;, we have to construct one for

fi(v)fj(w)x(z) and get the approximation for the time evolution j — j +1.
The representation (3.4) is due to Babovsky (1989):

Let B be a ball in R? of area 1 (radius \/-) then we can construct a function

$vw: B — S2 such that
’lﬂ(v, w, w) = Tv,w (st,w(l'))

and x is the characteristic function of B; here T, (n) is just v/, that is,
Tow(m) =v—n<v-—wmn> So ¢yu(x) is nothing but another represen-
tation of the ‘impact parameter »’. But more is hidden: the formulation
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includes at the end ‘dummy collisions’, that is, collisions without effect — a
useful strategy (as we shall see) originally used by Nanbu (1980), Neunzert,
Gropengiesser and Struckmeier (1991) and Ivanov and Rogasinsky (1988).
We shall give the construction of ¢, since it is the basis of our simulation
code: We fix v, w and take v — w as polar axis in a polar coordinate system
(a, B) for n, where « is the angle between 7 and v — w, that is, 8. We get

k(8)dn = k(a) sinadadg.
Choose a function r(«) such that
r(a)gl— = At - k(a)sina.

Since n € Si, that is, 0 < a < 7, the right-hand side is positive for a > 0
and r(a) is invertible with inverse a(r). The maximal value of 7%(a) is

Tz(%) = 2Atf2k(a) sin o da.
0

Now the restriction for the Euler scheme comes into play. We have to
guarantee nonnegativity of f;y1 if f; is nonnegative; this is achieved by

1— At / k(v —w|,0)dw(n) >0 for all v,w,

Sy
that is,
27 3
At//k(a)sinadadﬂ <1
0 0
or
2
2At/k(a) sinada = r? <ﬁ> < l
/ 2 s

This is a serious restriction on At! With Ty = (%) we get
At [ k)o@ dwm) = At [ (T (m)k(6) du(n)
= [T [ o @untatr) yraras
= [ ¢Tuldnate)) d.

if ¢y w(x) is just the mapping = ~ (r,3) — (a(r),B) ((r,3) are the polar
coordinates of the point x in the ball B,__ with radius ryax)-

max
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We have defined ¢, ,(z) for x € B, C B; this describes the case when
‘real’ collisions happen — v’ is different from v. The other part — correspond-
ing to (1 — At [ kdw)p(v) — reflects the probability that no collision occurs
and so we define ¢, ,,(z) as follows.

If x = (rcosB,rsinf8) ¢ By, then

max ?

busule) = (5.8).

If « = §, v — w is orthogonal to n and v" = v! Therefore, if = is in the
annulus rpax < r < %r we have dummy collisions.
®v,w is now defined for all x € B and since

(1 - At/k(@) dw(n)) o(v) = / 0 (Tyw(Pvw(x))) da,

Tmax <

S

it does what it should do:

Koo = [ ¢ (@o,w,2)) do
B

with x(z) =1 for all z € B.
What we have to solve numerically is

/<p v) fir1(v dv—/// Y(v,w,x)) f;(v)f;(w)dedvdw.  (3.5)

R3R3 B

Assume that we have an approximation {U{V (5)s -+ vN( ])} of f; and we
want to construct an approximation of fji1.

The right-hand side of (3.5) tells us what we have to do: The measure
over which we integrate is

fi() fj(w)Xp(z) dv dw dz,

where Xp is the characteristic function of B. We need therefore a ‘finite
point set’ that approximates f;(v)f;(w)Xg(x), which is an 8-dimensional
density of total ‘mass’ 1/M?.

If we construct a set { (v{v(*), wi¥ (%), z{v) yenes (v%(*), wh (%), x]NV> } (with
weights M/N) approximating this density, then

N
%;w(w (o (), w (3),2))
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approximates [ ¢(v) fj4+1(v)dv and

o 5+ =9 (o (0wl (+),2)

is an approximation of f;1!
This gives the simulation procedure and a convergence criterion:
Nip,... ,vﬁ{(j)} of f;, construct from that an

Given an approximation {vi

approximation

{(V ), 0l (0),2Y) ., (N (), wi (%), 2) }
of £;(v)f;(w)Xs(z). Then

o (G +1) =) (x),wl (%),2)), i=1,... N,

approximates f;1.

The main question remains: how do we get (v}¥(x), wN(x))? We have
only v)¥(j),4=1,..., N, but we have a lot of freedom — the only theoretical
condition is the convergence condition. We will come back to this question
in Subsection 4.1.

Practically speaking, we have more conditions — it is necessary to maintain
all conservation properties (mass, momentum, energy) even for the evolution

in the simulation process, which means for equal weights
N N
Yol @)= v G+
i=1 i=1
and
N N
Dol G =DMl G+ D%
i=1 i=1

All practical computations show the importance of the numerical conserva-
tion of these quantities (see also Greengard and Reyna (1992)).

3.3. Particle Methods for Inhomogeneous Problems

In the previous subsection we derived a particle method for the spatially
homogeneous Boltzmann equation. If we solve an inhomogeneous problem
we have to take into account the spatial location of a particle.

Concerning the discretization of the inhomogeneous equation we may use

flG+ DA z,v) = f(jAt,x— Atv,v),

of -

hCANN

= = 1),
that is, there is a decoupling of the free flow of particles and the collisions

among them.
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Fig. 1. Adaptive regular grid structure

Given an approximation of f(jAt,z,v) by a finite point set we have no
problems with the first equation: we just move the particles over the time
increment At with the particle velocity and no spatial discretization is re-
quired.

The second equation is much more complicated. Remember that f de-
pends on x, which for finite point sets is the z-coordinate of the particle,
but the collision operator is local in space.

The easiest way to get rid of the difficulties — this approach is used by
nearly all methods — is

(a) to introduce a spatial cell structure, like that shown in Figure 1,
(b) to substitute f by a step function

F(t,2,0) = foultyv) o eC
(c) and to consider in each cell the homogeneous Boltzmann equation and
use the algorithm presented in Subsection 3.2.

Hence, only particles that are located in the same cell can form a collision
pair.
Several important remarks have to be made here:

(a) One problem with this approach is that in every time step the particles
have to be resampled, after the free flow, from the cell structure. If the
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cell structure is like in classical FEM given by triangles or tetrahedral
cells this procedure requires an enormous computational effort. Hence

one uses regular meshes like the one shown in Figure 1.

The size of a cell has to be smaller than the local mean free path, the
appropiate resolution scale. Now the local mean free path depends
strongly on the local macroscopic gas density. This quantity may vary
by orders of magnitude in different regions: in front of an obstacle the
density may increase by a factor of 10 whereas on the lee side the density
may decrease by the same factor. There are two ways to overcome this
problem. The first is to use an adaptive grid structure, like in Figure 1
the second is to use different particle weights in different regions (this
is discussed in Subsection 5.1).

In the first part of the simulation process, the free flow of the particles,
some particles may hit the spatial boundary, leave the domain or enter
it. One has to take care of the corresponding boundary conditions:

e particles may leave the computational domain (absorption),

e particles may be re-emitted at a physical boundary (gas—-surface in-
teraction),

¢ particles may be reflected because of symmetry,

e particles may enter the spatial domain at parts of the boundary.
The gas—surface-interaction part is the most important phenomenon.
The boundary condition is defined by a scattering kernel describing
the velocity (respectively internal energy) change of particles hitting
the surface. For monatomic gases the boundary condition is

@nlfteo) = [ Re — o)l n)lftey)d
(v',n)<0

for all times t € R, x on the spatial boundary and (v,n) > 0.

The classical model (for monatomic gases) is the diffuse reflection
with complete thermal accommodation. Several other models, such
the as Maxwell model (Cercignani, 1989), Cercignani-Lampis model
(Lord, 1991) or Nocilla model (Nocilla, 1961), exist in the literature.

Different boundary models lead to different aerodynamic character-
istics, whence a concrete knowledge of the real interaction law is fun-
damental for the description of rarefied gas flows.

4. Practical Aspects of Particle Methods

In Section 3 a description of the main idea was given. But still particle meth-
ods have enormous demands of computational time and storage. Therefore
many minor tricks are needed to improve the efficiency and reliability of the
method. These tricks are the treasure different groups accumulate during
the development and the use of this code. In the following chapters we
describe some of the details of our code.
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Fig. 2. Approximation of the product f(0,v) - f(0,w)

4.1. Collision Selection and Conservation Quantities

The main part of the particle method given in the last chapter is the collision
procedure which may be described as follows: Given N particles (of equal
weights) at v1,...,vn (we omit the indices which are not necessary), deter-
mine N pairs {(v],w}),... (v}, wy)} and ‘impact parameters’ x7,...,z}
appropriately and get the new velocities by

Y (v, wi, %1) 5. % (VN Wi, ZN) -
There is no theoretical ‘necessity’ to form the pairs out of the set of particles
already given — but it is quite natural. Then we have N? candidates for those
pairs:
(’Ui,’Uj), 1§’¢,]SN
Figure 2 gives a 1-dimensional impression. How do we select N pairs out of
N? possible ones in order to get an approximation of f;(v)f;j(w)? Denote
the selected pairs by (vl,vj(l)) ey (vN,vj(N)).
If we have the pair (v;, vj(;)), we find an impact parameter z;. {z1,...,z N}
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must approximate Xg, that is, the uniform distribution in a ball, and they
may do that independently of (vi,vj(i)). This defines the new velocity

P (vi,vj(i),q:i). So, where do we put our cross in the ith column of the
(vi, v;)-diagram, that is, what is j(¢)?

The first idea due to Nanbu (1980) was a stochastic one:

Select a random number r; from a uniform distribution in [0, 1] and put
j(i) = [Nr)] + 1; then j(i) € {1,...,N}, but it might happen that two
different ¢ get the same partner j(i). We distribute the crosses randomly in
each column. We need to show that, for fixed velocities U, w and

Ri; X Ry = {(v,w) | v < 0,w < ¥},
7 X e, (i) = [ f@av [ flwdu,

<@

Using the central limit theorem, Babovsky (1989) showed that this is true
for almost all sequences (r;);en ,that is, the procedure converges with prob-
ability 1.

In principle we are through — but only in principle: There are many
necessary and possible improvements.

For example, in the Nanbu procedure described above, there is no con-
servation of total momentum or energy — this is true only ‘on average’. The
practical consequences were such that Nanbu’s method could not compete
with the so-called Direct Simulation Monte Carlo (DSMC) of Bird (1976),
which we shall describe in Subsection 4.3.

Babovsky gave an improvement that does not have this drawback.

Assume that N & 2n. Then divide the set {v1,...,vn} randomly into two
subsets {v},...,v}} and {v,...,v2}, each containing half of the particles.
Now choose a permutation 7 of {1,...,n} at random (i.e. each permutation
has the same probability) and consider (v},vﬁ(i))as well as (vfr(i),vil) as
pairs: we make our crosses symmetric with respect to the main diagonal.

Finally, we choose the same impact parameter z; for both pairs and get two
new velocities

Y (Uzl ) U?T(i), xz) and ¢ (”ﬁ(i)’ v, wz) :

This procedure keeps the idea of a binary collision and it conserves energy
and momentum, since they are conserved ‘pairwise’

v + 072,(1-) = (vil, v?r(i),aci) +9 (vfr(i), vil,wi)

and similarly for the energy |lv}|2 + ||v72r(i)||2.

So, symmetry guarantees these conservation laws — but only for equally
weighted particles. Babovsky has also shown convergence in probability for
this procedure.
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If we have different weights for approximating different species in a mix-
ture with great differences in the concentrations, then, in one cell, one might
have particles with different weights «;.

Conservation of momentum and energy in a cell would mean

k
Z/fj(t,v)vdv = constant,
i=1

k
> [ FeolvlPdv = constan,
j=1

where f7(t,v) designates the distribution of the jth species, which is assumed
to have a total mass M;.

Approximating f/ by M;a; zf’;’l 6,i, where a; is the weight of the jth
species, we would get the discrete conservation of total momentum Cjs and
total energy Cg

k Nj o
ZMjaijg = CM, (4.1)
j=1 i=1
k N; '
> Moy Y [P = Ce. (4.2)
j=1 i=1

If we would now consider binary collisions and try to conserve momentum
and energy ‘individually’ in each of these binary collisions, we would fail if
two particles representing different species were involved:

OéijUj + aiMivi = aij’Uj/ + aiMivi,
and
AT |2 2 — o M T 112 RV ARV
o Mj[[07||* + ca Mi||[v*||” = e M ||o” ||* + i Mi|o” |

are solvable only if a; = a; or if no collision happens.
However, it is possible to conserve momentum and energy with weighted
particles for the particle ensemble {(a%, b)), ..., (o, v}“vk)} — not ‘pairwise’,

but by choosing the collision parameters z¥ such that equations (4.1) and

(4.2) are fulfilled for the post-collision velocities [27].
4.2. Random Numbers and the Generation of Random Variates

We discuss now the question of how much stochasticity is necessary in a
particle code. What we need is to have

(a) a good approximation of the initial value fo(v) by a particle set;
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(b) aselection of N pairs (v1,w),. .., (v, wn) out of N? candidates (v;, vj)
such that they are a good approximation of f(v)f(w), if vi,...,vN is
a good approximation of f;

(¢) N 2-dimensional points i, ...,y approximating Xg(z);

(d) for the case where there are stochastic boundary conditions (such as
diffuse reflection etc.) an approximation of the distribution of the fluxes
leaving the boundary.

One may use random number generators for all purposes, that is, one takes
a 1D random number generator (for a uniform distribution in [0,1]), uses
sections of length k to get k-dimensional points, which should be uniformly
distributed in [0, 1]* and transforms them to get a sample distributed with
the given density f — this is what we have to do for (a) and for (c). How
we use random number generators in (b) was described in the previous
pages.

The main question is: do we need the ‘random property’ of these genera-
tors and how should we define this property?

We give one version of stochasticity for uniformly distributed random
numbers on [0, 1]:

If one has to construct a set of NV points z1, . .., zy approximating &} 1)(z)
in an optimal way, the best solution is simply the set

{ 1 3 2N—1}
2N’2N’""77 2N '

The discrepancy is % and this is optimal, but certainly not very random.
We can see that by constructing 2D points from it, for example,

(1 3 (3 5) (2N—3 2N—1)'
2N’2N/J’\2N’2N )’ "7 2N ' 2N ’

all points are near the diagonal of the unit square [0, 12 and therefore cer-
tainly not a good approximation of X yj.
The best discrepancy we can get (for the 1D and 2D sets) is now of order

In N/N. The points z1,...,zy seem now to be more stochastic — let’s call
them stochastic of order 1. We may realize that it is only pseudo random
by looking at sections of length k: (z1,...,zx), (22,...,Zk+1),... and con-

sidering them as points in [0, 1]*. If they are still good approximations of
Xjg,1J+» We say they have stochasticity of order £k — 1. A real random number
generator should have stochasticity of order oo — if we use it for Monte Carlo
methods in reactor physics, we need a stochasticity of very high order (the
dimension is proportional to the number of collisions a neutron has with a
nucleus).

In starting a simulation we should check how much stochasticity is needed
— and only then can we decide how to generate our particles. For problems
(a) and (c), we need just 3D or 2D approximations of f(v) or Xg(z). We
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might do this by using sections of length 3 or 2 — or by other constructions,
called low-discrepancy methods, which we shall describe now.

For (b) we need — for our permutation method — a stochastic separation
of a 2n-set into two m-sets and then a sequence 7y,...ry of [0,1] random
numbers. Since the convergence proof shows convergence in probability, we
need the independence of ry,...7N, in our language stochasticity of order
N — 1. But this is only due to our method of selecting N pairs out of N2,
We could do that completely deterministically but haven’t done it yet. Why
not select just one cross pattern (i, j(i)), which represents a uniform distri-
bution of the crosses (one may play with introducing an index discrepancy
just defined on {1,..., N}? and find an optimal 5(i)), and apply it in each
collision process? It would fulfil our convergence condition but would pre-
sumably insert a small but systematic error, which may accumulate during
the evolution. This is the only risk in using as little stochasticity as possible:
The fluctuations get smaller, but might be ‘one-sided’ and do not average
out in the evolution.

Such a problem may occur in treating boundary conditions (Missmahl
1990), where one gets one-sided errors, which lead to a ‘numerical cooling’.
Changing the deterministic procedure just a bit, one may get rid of the effect
— but this has to be done carefully.

But for (a) and (c) one may easily use low-discrepancy methods exten-
sively described by H. Niederreiter (1992).

We want to construct point sequences (not ensemble sequences) z1, 2, . ..
such that wy = {z1,...,zn} has a low discrepancy against Xy, that
is,

k
D(wN,X[Oyl]k) = D(wN) =0 (lnjj\;[ )

(remember: sequences of ensembles could have O (Mﬁk_—l>)

InN 1 1
Fi = imal order —— — — ...
or k 1, we get as optimal order N not o as for {2N’ ,
2N —1
2N
The starting point is an old idea by van der Corput, defining z; as follows:
Take the dual representation of ¢ = €1 + 521 +--- +£,,2™"1 ¢, = 0,1, and
put

, which is an ensemble sequence.

zi = ¢o(i) ;= 027 + 6272 + -+ £,27™ € [0,1].

For it

2 InN 1
Dlw) = 5557+ ()
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so it has optimal order. We can change the basis 2 and use any p-adic
representation of 7 as well; this was done by Hammersley and is denoted by
90 (0).

To get k-dimensional sequences, Halton proposed taking numbers py, ...,
pi relatively prime and constructing

X = (¢p (1), 0p.(3)), i€

Here again D(wy) = O (lnfvv k), that is, is optimal.

Please realize that we do not construct k-dimensional points by using
sections of 1D sequences. Therefore we need only stochasticity 0.

There are several other methods of constructing k-dimensional low-dis-
crepancy sequences, mainly by Faure (1982), Sobol (1969) and Niederreiter
(1992). They differ in the O-constants, which depend on the dimension & —
and they may have especially low discrepancy for certain N. Since our k is
never higher than 10, we do not care about it too much. There are many
tests on the behaviour of different LD-sequences by G. Pages (1992).

From a practical point of view it is fundamental to have fast algorithms
for generating x; — the algorithms should not be slower than the linear
congruential methods used in normal random number generators.

A fast algorithm for a special class of low-discrepancy sequences can be
found in Struckmeier (1993). It uses the p-adic Neumann-Kakutani trans-
formations Tp: [0,1] — [0, 1], which might be written as Tp(z) = z @ % with
a ‘left addition &’ or as

Tp(z) =z + ¥
with
1
b = E(P‘F 1—p)i
and
In(1 -
i=i) = -2 41

Now z; defined by z; = T,(x;-1), o € [0, 1] arbitrary, is a low-discrepancy
sequence, called a generalized Halton sequence, and has the same optimal
behaviour.

The algorithm is clear: one generates bg’ Vj € N and then iterates as
follows.

Given z,, we compute j(z,) and then x,41 = zp + b;’(zn) (in practice it
is sufficient to compute only the first 32 points of bf ). In k dimension, we
use relatively prime numbers pi, ..., pr and define the mth component, z}",
of x; by

zit=Tp, (1), 1<m<k.

1
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Table 1. CPU time in seconds to generate 10° numbers on [0, 1]

Hardware | gH. (b=2) LC (F77) rand() (UNIX)
IBM 6000/530 1.9 2.8 1.6

HP 9000/835 SRX 4.8 25.8 12.9

HP 9000/710 1.0 3.1 2.0
nCUBE 2S 1 node 6.3 5.4 -

Table 2. Discrepancy and variation of different sequences

Sequence | D N VM D N VM D N VM

Optimal |1.72- 102 5.15- 103 2.89 1073

rand() 1.30-10"! 1.6-1073 7.76-10"2 6.7-10~* 6.40-10~2 3.0-107%
gH. (b=2)3.97-10"2 7.1-10~% 1.25-10-2 5.7-10~% 9.71-10~3 8.1-10~7
g.H. (b=3)|3.50-10"2 6.1-10~% 1.64-10"2 8.1-10~% 8.99.10~3 3.6.1076
g.H. (b=5)|3.43-10"2 6.1-10~° 1.57-10~2 1.1-10~> 9.63-10~% 2.3.10°

| N=20 M=20 N=97 M=20 N=173 M=20

This method works quite well in low dimensions, but not for very high
dimensions k: then p; becomes very large and 7T, produces worse results for
very large p (the O-constant depends on p and tends to oo exponentially
fast).

Here are some of the numerical results given in Struckmeier (1993): First
the time needed to generate 10° numbers on different machines is given
in Table 1. Then some discrepancies averaged over samples of size M —
we average the discrepancy and compute the variation Vi — are given in
Table 2.

Further numerical examples are given in Subsection 5.5.

Up to now, all the effort has been put into the generation of uniformly
distributed sequences on [0, 1]*. But the densities in rarefied gas dynamics,
which we want to approximate, are never constant; typical densities are,
for example, Maxwellians. Therefore we have to transform uniformly dis-
tributed sequences into f-distributed ones, where f is a given density. This
is easy for Maxwellians: the densities factorize, so the problem may be re-
duced to 1D problems. The 1D case is simple — especially since one can use
the so-called Box—Muller algorithm.
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If the k-dimensional density does not factorize, the problem is more com-
plicated. Hlawka and Miick (1972) have constructed a transformation T
whose inverse transforms uniformly distributed point sets into f-distributed
ones. The transformation T = (T3,...,T}), which has to be inverted, has a
diagonal structure

Tj((l}l,...,wk)=T]'(.'L‘1,...,$j), j=l,...,k.

This can be used for a numerical inversion — an extensive study on the
optimal numerical method was done by M. Hack (1993). The estimates for
the discrepancy are worse in this case (Hlawka and Miick, 1972)

D(T'wl,f) <C-D (w%)%,

but the computations show much better behaviour. Fortunately, the prob-
lems we have treated until now have not called for the construction of point
sets with low discrepancy against an arbitrary f (the simulation algorithm
did it).

4.3. Bird’s DSMC Method

We shall now describe the DSMC version, originally developed by G. Bird,
and compare it with our method.

One main difference is that the original DSMC method does not con-
sider dummy collisions, that is, one checks whether a pair really performs a
collision (i.e. if z € B,_, ). If so then we call it a ‘collision pair’.

To decide whether a given pair (v;,v;) is a collision pair (cp), one uses an
acceptance-rejection method with a parameter Vihax, which is supposed to
be the maximum relative speed of all particles

Vinax = max {||v; _Uj“ |1<4,j<N}.

Then a pair is a cp if a [0,1]-uniformly distributed random number r is
larger than

l|lvi — vsl]
Vma.x

In this case an impact parameter is chosen and a collision is performed.
The computation of Via, requires N2 operations; therefore one starts with
a guess V' of Vinax and updates it if one finds a larger ||v; — v;{|. We get the
following procedure:
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(v1,...,un) guess V

select
T €s
(0}, v}) — gl s YS! 01) = ep(or, wn)
Vi = max{V, |jv; — w1}
no
(v?,vf-) - ..

If cp(v1,w;) is selected, we determine a time increment

C

Arp = ————
P Nor — wi]]

(C is a gas-dependent constant).

We substitute (vf,v}) for (vi,v;), that is, we update our particle ensemble
after A7, and we repeat the process until we reach At, that is, until

ATy + - + A1 > At

(For our space-independent problem, At has lost its original meaning: our
time step is A7 and it is chosen such that only one collision happens during
this interval; in this case, the time discretization is coupled with N — the
time step tends to zero as N goes to oo. In the finite point set method, N
may go to oo without At tending to 0. In a space-dependent problem, At
keeps its importance: we move the particles in space over At.)

For the correct procedure (with the real Viyax), Wagner (1992) has shown
convergence as a stochastic process, that is, in probability. In practice, the
results are sensitive to wrong initial guesses of Vjjax.

The ‘no time counter’ version of Bird, mainly used today for computa-
tional reasons, seems similar: instead of changing time steps A7; choose one
fixed AT, which is supposed to be the average time, in which one collision
happens

C
Ar=—"—
TTNV

(i.e. V instead of |[v — w||). V is updated at the end of At, not after Ar.
The algorithm works quite well, again up to a sensitivity with respect to V.

To compare shortly our finite point set method with permutations, we
have just
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At ; ,
U1y .-y UN Vyy -y Un
T1y -+ TN
pairs (vy,w1) ,..., (vn,wWN)

At is restricted by
1= At [ k(o = w],6) dw(n) 2 0
S2

for all (possible) v, w!

Finally, we may also do updating during the collision process: We perform
each collision immediately, that is, substitute (vj, v7) for (v;, v;) after At/N.
The difference is that we keep N collisions (including the dummy ones) and
work with the small timestep At/N, but do not need a guess of Vijax.

The differences in computing time are less than 10 per cent, the results
are demonstrated by the examples given in Subsection 5.5.

5. Some Ideas on How to Improve and Extend the Code

In this last section we shall report on some ideas on how to improve the code,
to accelerate the algorithm and to extend it to more realistic situations.
These topics will be:

5.1 ‘Different weights for particles in different regions’.
This is different from ‘different weights for different species’ and does
not create the same problem of conserving energy and momentum when
particles of different weights collide. There is a detailed study of it by
Schreiner (1991).

5.2 ‘The use of symmetry in particle codes’.
If point sets are considered in a physical way — as representations of
real particle sets — it is not easy to take advantage of geometrical sym-
metries of the problem (and the solution). To do that we have to
exploit the idea of approximation by discrete measure; for example, if
the density has cylindrical symmetry, depending only on z;,v1, ||Z|,
I|9]| and < Z,9 > (where & = (z2,z3), ¥ = (ve,v3)), then our mea-
sures will be measures in this 5D (instead of 6D) space. One can
save a lot of computing time, as is shown by Struckmeier and Steiner
(1993).
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5.3 ‘Matching’ of kinetic equations with diffusion or aerodynamic lim-
its.
This must be promising: each kinetic equation has some singular lim-
its (‘Diffusion approximation’, Euler or Navier-Stokes equation etc.),
which hold at least in some parts of position space. Solving these sim-
pler equations in these parts and matching the solutions with those of
the kinetic equations, which one gets in the ‘kinetic rest’ of the domain,
poses a new problem in domain decomposition. There have been at-
tempts in this direction — see, for example, Illner and Neunzert (1993),
Bourgat et al. (1994) and Klar (1994).

5.4 ‘Efficiency on massively parallel systems’.
During the past few years several authors have investigated the per-
formance of a particle method on massively parallel systems (see e.g.
Barteland Plimpton (1992), Dagum (1991), Struckmeier and Pfreundt
(1993) and Wong and Long (1992)). In this section we will follow the
approach given in Struckmeier and Pfreundt (1993).

5.1. Spatially Weighted Particles

‘Different weights in different regions, but equal weights in each cell’ is an
easily solvable weighting problem. In Schreiner (1991) the author describes
how to find an appropriate particle mass in each cell in position space and
how to change our particles (by splitting them or pasting them: Splipa) so
that each particle has this desired mass.

Clearly, this desired mass m* has to be small if the density in a cell is
small (e.g. behind a space vehicle) — and it has to be large if the density is
high (in the bow shock). In this way one may control the number of particles
in each cell. During the free flow, particles of different masses may enter
the same cell — but since we want to perform collisions only with particles
of the same mass, we have to homogenize them. We allow only integer
values for particle masses and we assume that m* is always of the form 27;
therefore homogenization might be done by splitting particles of mass 2/ 1%
into 2% particles of mass m* or by pasting minor particles together (by first
splitting them into particles of minimal mass and then unifying them two at
a time again and again until they have grown enough). The only problem
here is that one should do this in such a way that mass, momentum and
energy are conserved in each Splipa procedure; in particular the velocities
after pasting have to be chosen carefully and there are only some signs to
be chosen freely.

One might save time by these ideas. For a 2D problem (flow around an
ellipse), Schreiner (1991) used 25 or 64 particles per cell in the beginning;
the simulation without any weighting is then callied A25 or A64, and with 3
or 4 different weights we call it B25-3 or B25-4, respectively (see Table 3).
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Table 3. CPU times and number of particles in the stationary state

| CPU  Partnr

A64 | 44’41” 706,000
A25 | 24’527 275,000
B25-3 | 29'13” 334,000
B25-4 | 26'17" 248,000

30 T T T T T T T

25 - B

Normalized Temperature

5 i L 1 L 1 L L i

1 2 3 4 5 8 7 8 9 10
Cells on the lee side

Fig. 3. Temperature along line in flow direction

The results differ — at least the temperature (it is a second moment) shows
big changes from A25 to B25-3 behind the vehicle (see Figure 3). So, it is
cheap and rewarding to use this weighting. But we want to recall that
weights for different species, where homogenization is not possible, create
much bigger problems.

5.2. Simulations with Azisymmetric Geometry

Symmetry reduces dimension in any numerical method, but normally not
for particle methods. The reason is the usual one: particles are considered
as physical quantities, not as approximations of densities.

Assume that we have cylindrical symmetry, that is, the boundary has a ro-
tational symmetry with respect to the z-axis. Introducing cylindrical coordi-
nates means to substitute (z,r, ) for (z,y, z) and (vg, vy, vy) for (vg, vy, vz).
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Since vr, v, depend on ¢, we get a more complicated free-streaming term
and have to transform I(f) to cylindrical coordinates (which was done in
Niclot (1987)). A new collision strategy has to be defined — this way seems
to be too elaborate. We may use (z, r, ) together with (vz, vy, v,) — things
will not fit completely, but some important aspects remain unchanged. We
get

oF oF - OF  —sinyuvy + cos v, OF
— F+V—— + (COS Py + sin (pvz)_a_r + yr z %

= I(F).

ot oz (F)
I(F) is not changed here. Free streaming means solving & = vy, © =
(cos vy +sin v, ), p= (— sin puvy +cos v, )/r with initial values (o, o, @o).
The solution is

Tz(t,anT()a(POaU) = $0+t'Uz,
. 1/2
Tr(tv Z0,7T0, 0,y 1}) = (T’g + 2t'f'0(COS PoUy + Sin ()OO’UZ) + tZ(US + U?)) )

Tosin g + tv, )

T,(t,zo,70,00,v) = arctan
‘p( 0,70, 40, V) (rgcosgoo+tvy

For I(f) = 0 we get F(t,z,r,¢,v) = Fo(T(~t,z,7,0),v).

Now we define G = r~!F and consider the corresponding equation. If, for
example, F is a uniform distribution in position space with respect to the
Lebesgue measure (in polar coordinates rdrdpdz), then G can be regarded
as a uniform distribution with respect to the ‘cartesian’ measure dr dydz,
since G rdrdpdz = F drdedz.

To be more flexible, we consider

G(t,z,r,p,v) = R(r)F(t,z,r, ¢,v).

The equation for G is similar to that for F, but it has on the left-hand side
an additional term —(cos @u,+sin ¢v, )0, (In R)g and instead of I(F) we have
R1I(G). This additional term changes the solution of the free-streaming
part into

RI(-1) (o i o
R CORY

and the factor R(T,(—t))/R(r) may be handled as a weight: a particle, mov-
ing from P; = (z;,7i, i, v;) to Pi(At) = (T(At, P;),v;) changes its weight
in proportion to R(r;)/R(r;(At)). For the natural choice R(r) = r~! the
particles become heavier in moving away from the axis — the number of par-
ticles in a ring of thickness Ar remains unchanged (since the mass in a ring
(i — 1)Ar < r < iAr grows linearly with ¢, the weight of a particle has to
grow linearly with i too in order to keep the particle numbers constant).
But now we have particles of different weights in the same cells — some-
thing we wanted to avoid. Even in the beginning, R(r) = r~! would give

G(t, iL', T, (Pv ) -
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Flow Direction

Fig. 4. Geometry of the hyperboloid flare

different weights. Therefore R is chosen as a step function approximating
r~1; but still differently weighted particles may enter a ring. Besides ho-
mogenization described under (b) one may follow a general idea by Bird: if
the weight changes by a factor « less than one, just keep the particle with
its old weight but with a survival probability of a. If « is larger than 1, say
a=m+a,meN,0<da <1, create m new particles of the same weight
and one other with probability /. Again such a strategy does not work if
we have different species of gas, but is successful here. No rigorous proof is
vet available.

This reduces the computational costs drastically. Struckmeier and Steiner
(1993) have done a study for HERMES with a flap at the leading edge (see
Figure 4). Some results are shown in Table 4.

5.8. Domain Decomposition Techniques

We believe that the most promising prospect practically as well as theoreti-
cally is to use kinetic equations only where one is forced to use them — and
to use the appropriate limits wherever it is possible. This idea materializes
in two questions:

(a) The ‘where’ problem: What are the regions where the diffusion limit
or the Euler equation is valid, but in their complements the kinetic
equations are necessary.

(b) The other problem is the ‘how’ problem: how do we patch or match
the solution of the kinetic equation with those of the limits.

Kinetic equations deal with position-velocity densities and the limits with
macroscopic quantities, which can be interpreted as some moments of the
kinetic density: What kind of boundary conditions for the two types of
equations are the ‘correct’ ones? (Assuming the kinetic solution everywhere
is the truth, which boundary conditions at the transition give a ‘combined
solution’ as near as possible to the truth?) Until now, only the continuity
of the macroscopic quantities across the transition boundary has been tried
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Table 4. Numerical parameters and global surface quantities

Altitude[km] |  Gas Too [K] Ma T, IK] Aoo[m]
120 N, 368 20 1400 2.69
110 N, 247 23 1400 0.60
100 N 194 25 1400 0.137

Altitudelkm] | Partnr  Cellnr Part/Cell Timesteps CPU[h]

120 570,000 11,264 64 1000 1.5
110 925,000 11,264 64 1000 2.5
100 2,000,000 40,960 36 1000 4.0
Altitude[km] | Cd,0° Cl,0° (L/D)Oo Ch,OD Cm,0°
120 2.191 .890 .406 .868 .882
110 1.688 1.048 621 .539 .641
100 1.360 1.170 .860 313 490

Altltude[km] | Cd7120 Cl 120 (L/D)lzo Ch,12° Cm112o

3

120 2.304 941 .408 901 974
110 1.785 1.109 621 .557 727
100 1.461 1.246 .853 325 .584

Coefficient ’ Drag Lift  Lift/Drag Heat Pitching

to be realized; details are described in Lukshin, Neunzert and Struckmeier
(1992).

Since we focus on collisions, we just want to stress one comparing the
simulation of collisions with the solution of an Euler equation (we choose
Euler since it is — as a singular limit — much better understood than Navier—
Stokes). The Boltzmann equation is solved by a particle code that moves
the particles in a free flow over At and then treats the collisions at the end of
the time step. The Euler equation can be solved by a very similar procedure:
move particles in a free flow over At, but then redistribute them according
to a Maxwellian distribution whose moments are given by particles at the
end of a time step. The Euler equation gives a time evolution that is a free
flow with a constraint: stay on the manifold given by {f : I(f) = 0}. The
ordinary free flow, starting at this manifold, moves away — so we have to
project back onto it; this is the redistribution (see figure 5). So, the difference
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free flow redistribution

{f:K(f)=0}

Euler flow

Fig. 5. Redistribution of the kinetic density

(¢3)

Kn

Equilibrium Free Molecular

Fig. 6. Influence of I(f) in dependence on the Knudsen number

between the Boltzmann and Euler equations is the difference between the
collision procedure and the projection. The projection is numerically much
cheaper — so do projection whenever it is possible and collisions when it
is necessary. What we try to use here is the fact that I(f) becomes small
when f becomes very rarefied — and, when f becomes very dense and near
to a Maxwellian, frequent collisions create an equilibrium distribution f for
which I(f) = 0. The denser f is the more expensive the collision procedure
becomes — but at the same time, the smaller [ (f) becomes (see Figure 6).
To avoid this effect, we may use these projections. The key words here are .
‘kinetic schemes’ and they may be converted into particle schemes for the
Euler equations — see Schreiner (1994).

Using kinetic schemes, matching of the two codes is a minor problem: just
do projection or collisions cellwise, but otherwise move freely without caring
where you are.
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5.4. Particle Methods on Parallel Computers

Still, realistic problems need enormous computational effort. Therefore it
is reasonable to investigate the performance of Boltzmann simulation codes
on massively parallel systems.

A parallelization of the code refers mainly to the grid structure on the
spatial domain; the cells are, for example, cubes with a length smaller than
the mean free path of the unperturbed gas. The collision process in a cell
is independent of those in other cells — and it is the most time consuming
part. One parallelizes the code by assigning a certain number of cells to
each processor. In general one would have much more cells than processors,
whence it is necessary to include a communication procedures.

In the first part of the time-iteration process particles may leave cells
and enter others — if these cells belong to different processors, this means
communication between processors.

The partition of cells has to be done such that this communication, that
is, the number of particles crossing processor boundaries, is minimized. But
a static partition, fixed at the beginning of the computation according to a
priori information about the flow fields (most of the particles move essen-
tially with the stream velocity), does not produce a good load balance of
the processors — particle numbers per processor change and result in a very
insufficient load balance; this reduces the speed-up factor as compared to
single processors.

To get an adaptive procedure, we put cells lying in a row with respect
to the main stream velocity together to form ‘spatial sticks’. Several spa-
tial sticks are assigned to processors — and the adaption consists simply of
exchanging sticks from the minimally to the maximally loaded processors.
This exchange creates an iteration procedure until we get near to the par-
tition when the numbers of particles in the processor domains are near the
average number. The procedure creates partitions where the local character
of the stick—processor assignment is destroyed (see Table 5).

One may suspect that this gives rise to a high communication time; that
this is not the case is shown in Figure 7.

The speed-up factor is constant near 30 (here the factor 32 is — using 32
processors — optimal) if one compares different Knudsen numbers, that is,
different densities and therefore a different collision frequency (see Figure
8). A comparison of CPU times on the nCUBE2s with a VP100 shows that
the higher peak performance of the vector machine does not lead to lower
CPU time (Table 6).

5.5. Numerical Ezamples

First we come back to the comparison of the finite point set method and the
DSMC method of Bird (see Subsection 4.3).
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Table 5. Final state of the adaptive processor partition (zy-plane)

6 |27 |25 45|82 |11]18]| 4|3 |18
23 (19142515 2 (17| 8 3227 2|5
18127114122 3 (29| 4 | 8 | 24|29 |16 |22
30| 4 (4|24 |21|22|14|16|10] 9 |11]15
6 (302010 2 24| 3 [23| 8 |21|29]26
15126 9|9 |13(16( 8 (27| 1| 7 |30| 3
211121221 5 | 7 130}/30| 6 [23|26]| 6 | 2
23 {31 (23|18 (13| 7 |22|1012] 3 |29 |27
32 (29 (10 (13 (3123|2114 |18 |26 13|14
26 9 (7 (2 {109 (24|29 1 |16]| 17|18
8 121124 (30119 7 |15(30}12 13! 6 |12
1113124130114 ]12 (25| 4 (252231 6
21116 | 18 | 1 | 2915 1 |20 (13| 4 | 28|26
2812567291 312 |5 [19]20/[23| 2 |28 32
1 (518|129 1 |11}26]|20(32]211|28]22
7 (15282028117 |17]14| 6 | 5 |28 25
261245 123716 8 (1710219 |17 ]| 4
13{12|120 (14| 6 (1916 (1430|2031 | 17
2 (11119 |81 ]2/25(5 ]9 [30;30
1011914 )9 }1293 |7 25|18 1 (1030
12132122 (17| 1 [20)15| 5 | 22|19 |30 30
28126 (281101211 (11 |15|15] 6 |27 (19
38 |21 27127116 |24 (192320127 30
7016313 7 |17 (2611 (19|32 |13 |27 | 24

We consider the flow around a hyperboloid flare (see Figure 4) at high
Mach number and an altitude around 100 km. Here one may use the ax-
isymmetric version of the particle codes described in Subsection 5.2. We
calculate ‘global’ quantities acting on the body such as the drag, lift or
heat-transfer coefficient.

The main task is to investigate the sensitivity of the different approaches
to the number of particles used in the simulation.

Looking at Figures 9 and 10, we realize that, except for the DSMC time-
counter version, both methods, DSMC as well as the finite point set method.
show nearly the same behaviour with respect to the particle number. A lot
of more results can be found in Struckmeier and Steiner (1993).

The high degree of modelling necessary to describe real-gas effects requires
a validation of the models used in a particle method. The following example
has become a ‘classic’ test-case, mainly due to the establishment of the
European Hypersonic Data Base (EHDB).
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Fig. 7. Communication time vs. nodes at Kn = 0.5 and 45° angle of attack
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Fig. 8. Speed-up factor vs. Knudsen number at 45° angle of attack

We consider the flow of nitrogen gas around a 3D delta-wing at a high
Mach number. The measured quantities are global surface quantities like
the drag or the heat-transfer coefficient. Figure 11 shows the drag coefficient
versus the Knudsen number at Mach 20.2 and 45° angle of attack, Figure
12 the heat-transfer coefficient.
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Table 6. CPU times for a 3D computation with Kn = 0.5 and 45° angle of
attack

| MFLOP CPUJs] ratio

nCUBE2s/8 35 579 3.7
nCUBE2s/16 70 297 1.9
nCUBE2s/32 140 156 1.0
Fujitsu VP100 285 1075 6.9
2.24 T T T T T T T
DSMC, Time Counter ——
DSMC, No Time Counter ----
222 S
22 | 4
. 218
§ 216
g
214 |
212
21 +
2.08 1 L s ) L L 1
0 50 100 150 200 250 300 350 400
Particle number/cell

Fig. 9. Drag coeflicient versus particle number

The agreement between numerical results and measurements is quite con-
vincing; hence, the model for the exchange of different energy types like ro-
tational and vibrational energies (in this case the Larsen—Borgnakke model)
is accurate enough to reproduce the physical situation.

As a last example (see Figure 13) we compare the local pressure dis-
tribution along the surface line calculated by a particle method with the
prediction given by the modified Newton theory. We consider again the hy-
perboloid flare (Figure 4) with flap angle of 0° respectively 12° at Mach 25
and an altitude of 100 km. The given altitude corresponds to the ‘small’
Knudsen number of 9-1073; hence, one may expect that the modified Newton
theory gives reasonably accurate results.
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Fig. 11. Drag coefficient versus Knudsen number

6. Final Remarks

We believe that particle methods have become a reliable instrument in rar-
efied gas dynamics. Using massively parallel systems one can treat realistic
problems with a reasonable effort. However, some physical effects like ioniza-
tion or recombination are still neglected (or handled in an unreliable way);
therefore further improvements are needed. The most promising ansatz is
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Fig. 12. Heat-transfer coeflicient versus Knudsen number
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Fig. 13. Local pressure coefficient along the surface line

the combination of asymptotic analysis with numerical methods (as in many
fields!); we will solve the simpler ‘singular limit equations’ whenever it is
possible — and the more complicated kinetic equations when it is necessary.

Why are particle methods not just finite difference methods or something
similar? Kinetic equations are high-dimensional. Approximations of densi-
ties by discrete measures are more robust with respect to dimensions. This
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might be the reason that competing methods until now have failed in treat-
ing 3D problems. Why are there still some stochastic elements and why is
there still a lot of ‘Monte Carlo’? The explanation for this may be given by
the theory of information-based complexity; there are many hints that this
theory provides ideas to answer the question of why Monte Carlo — correctly
applied - is advantageous.

There are still gaps between existence theory and numerics; but the theory
cannot provide us with uniqueness which is what we need to bridge the gap.
There is still a long and exciting way to go.
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